Algebra 1 Intro to Quadratic Functions

Name \qquad Notes

Given the following equation, fill in the table of values. Then plot the points on the graph.

x	y
-3	
-2	
-1	
0	
1	
2	
3	

Answer the following questions about your table or graph:

1. Is your graph a function? \qquad Is your graph linear? \qquad
Describe the shape of the graph: \qquad
2. Looking at the table, is there a constant rate of change in the x-values? \qquad Is there a constant rate of change in the y-values? \qquad
3. Does the graph seem to have a maximum or minimum point? \qquad where? \qquad
4. Does the graph cross the x-axis? \qquad where? \qquad
5. Does the graph cross the y-axis? \qquad where? \qquad
6. Does the graph have symmetry? \qquad If so, draw in the line of symmetry.
7. Could you plug in more x-values other than the ones given in the table and still be able to find an answer? \qquad
8. If we plugged in more x-values, what would happen to the y-values we would get? \qquad

VOCABULARY:

Quadratic Function - \qquad
Vertex - \qquad
Roots or Zeros - \qquad
Axis of Symmetry - \qquad

Graph each quadratic function below on your calculator. Sketch the graph and then answer each question.

1. $y=2 x^{2}-8$

Is this a function? \qquad Does the graph open up or down? \qquad
What point is the vertex? \qquad Is this point a maximum or a minimum? \qquad
What are the roots or zeros of the function? \qquad (where does the function cross the x -axis?)

What is the \mathbf{y}-intercept? \qquad
Draw in the axis of symmetry and then state its equation here: \qquad
Find the domain \qquad and range \qquad of the function.
2. $f(x)=-x^{2}+2 x+3$

Is this a function? \qquad Does the graph open up or down? \qquad
What point is the vertex? \qquad Is this point a maximum or a minimum? \qquad
What are the roots or zeros of the function? \qquad (where does the function cross the x -axis?)

What is the \mathbf{y}-intercept? \qquad
Draw in the axis of symmetry and then give its equation here: \qquad
Find the domain \qquad and range \qquad of the function.

Algebra 1 Intro to Quadratic Functions

Name \qquad Key \qquad Notes

Given the following equation, fill in the table of values. Then plot the points on the graph.

x	y
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

$y=x^{2}$

Answer the following questions about your table or graph:

1. Is your graph a function? \qquad yes \qquad Is your graph linear? \qquad no \qquad
Describe the shape of the graph: \qquad U - shaped \qquad
2. Looking at the table, is there a constant rate of change in the x-values? \qquad yes \qquad Is there a constant rate of change in the y-values? \qquad no \qquad
3. Does the graph seem to have a maximum or minimum point? \qquad min \qquad where? \qquad $(0,0)$ \qquad
4. Does the graph cross the x-axis? \qquad yes \qquad where? \qquad $(0,0)$ \qquad
5. Does the graph cross the y-axis? \qquad yes \qquad where? \qquad $(0,0)$ \qquad
6. Does the graph have symmetry? \qquad yes \qquad If so, draw in the line of symmetry.
7. Could you plug in more x-values other than the ones given in the table Domain: all real numbers and still be able to find an answer? \qquad yes \qquad
8. If we plugged in more x-values, what would happen to the y-values we would get? they would continue to get larger

$$
\text { Range: } y \geq 0
$$

VOCABULARY:

Quadratic Function - __A function whose graph is a parabola \qquad
Vertex - __the maximum or minimum point of a quadratic function \qquad
Roots or Zeros - \qquad where the graph crosses/touches the x -axis \qquad
Axis of Symmetry - __an imaginary vertical line that divides the parabola in half \qquad

Graph each quadratic function below on your calculator. Sketch the graph and then answer each question.

1. $y=2 x^{2}-8$

Is this a function? \qquad yes \qquad Does the graph open up or down? \qquad up \qquad What point is the vertex? __($0,-8$) \qquad Is this point a maximum or a minimum? \qquad min \qquad
What are the roots or zeros of the function? \qquad $(2,0) \&(-2,0)$ \qquad (where does the function cross the x -axis?) What is the \mathbf{y}-intercept? \qquad $(0,-8)$ \qquad
Draw in the axis of symmetry and then state its equation here: \qquad $x=0$ \qquad
Find the domain \qquad all real numbers \qquad and range \qquad $y \geq-8$ \qquad of the function.
2. $f(x)=-x^{2}+2 x+3$

Is this a function? \qquad yes \qquad Does the graph open up or down? \qquad down \qquad
What point is the vertex? __(1,4) \qquad Is this point a maximum or a minimum? \qquad max \qquad What are the roots or zeros of the function? _ $(3,0) \&(-1,0) \ldots$ (where does the function cross the x -axis?) What is the \mathbf{y}-intercept? \qquad $(0,3)$ \qquad
Draw in the axis of symmetry and then give its equation here: \qquad $x=1$ \qquad
Find the domain \qquad all real numbers \qquad and range \qquad $y \leq 4$ \qquad of the function.

Thank you!

Thank you for your purchase.

Let's Connect!

SecondaryMathSolutions.blogspot.com for teaching tips and free resources!

Secondary Math Solutions on Pinterest \& Facebook

SecondaryMathSolutions@gmail.com

My Complete Unit Bundles contain everything you need for an entire unit and will save you a ton of time!

Try one today!

Terms of Use

The purchase of this resource includes a license for one teacher for personal use in their classroom only.

This license is non-transferrable which means that this resource cannot be shared with other teachers, teams, grade levels or districts unless additional licenses are purchased.

This resource may not be posted on the internet in any form including personal websites or network drives unless the site is password protected and can only be accessed by students.

No part of this resource may be reproduced, transmitted or distributed without express permission from the author.

